STANDARD IB CLUTCH
IB321P

QUALITY IS STANDARD
- TAPERED ROLLER MAIN BEARINGS
- SEALED FOR LIFE PILOT BEARING
- VENTILATED CENTER PLATES AND DRIVE RING
- OPTIONAL SINTERED IRON PLATES
- BUILT IN HEX NUT
- MORE SUITABLE FOR SIDE LOAD APPLICATIONS
- LESS MAINTENANCE
- IMPROVED HEAT DISSIPATION
- CREATES 25% HIGHER TORQUE CAPACITY
- EASES ADJUSTMENT VERIFICATION

SPECIFICATIONS - IB321P

<table>
<thead>
<tr>
<th>Model Number</th>
<th>SAE HSG.</th>
<th>Max. Input Torque Nm (lb-ft)</th>
<th>Maximum Safe Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Organic</td>
<td>Sintered</td>
</tr>
<tr>
<td>IB321P</td>
<td>00</td>
<td>9132 (6730)</td>
<td>11398 (8400)</td>
</tr>
</tbody>
</table>

LOAD CLASSIFICATIONS BASED UPON AGMA LOAD CHARACTERISTICS

<table>
<thead>
<tr>
<th>PRIME MOVER</th>
<th>DURATION OF SERVICE</th>
<th>DRIVEN MACHINE LOAD CLASSIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNIFORM</td>
</tr>
<tr>
<td>Electric motor</td>
<td>Up to 3 hours per day</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>3-10 hours per day</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Over 10 hours per day</td>
<td>1.25</td>
</tr>
<tr>
<td>Multi-cylinder internal combustion engine</td>
<td>Up to 3 hours per day</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>3-10 hours per day</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Over 10 hours per day</td>
<td>1.50</td>
</tr>
<tr>
<td>Multi-cylinder internal combustion engine with high torque rise</td>
<td>Up to 3 hours per day</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>3-10 hours per day</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Over 10 hours per day</td>
<td>2.00</td>
</tr>
<tr>
<td>Single cylinder internal combustion engine</td>
<td>Up to 3 hours per day</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>3-10 hours per day</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>Over 10 hours per day</td>
<td>1.75</td>
</tr>
</tbody>
</table>

TO CALCULATE APPLICATION TORQUE:
5252 x HP x Engine RPM = Torque
Torque x Load Factor = Application Torque
Use load factor from chart at left

All clutch engagements to be with prime mover below 1000 RPM. High inertia loads may require use of larger clutch.
Contact Twin Disc application engineering department for assistance.

Specifications subject to change without prior notice in the interest of continual product improvement.
Contact your local Twin Disc representative for engineering specifications.
The following general formula should be used for determining the actual applied load: \(L = \frac{126,000 \times HP}{N \times D} \times F \times LF \)

WHERE
- \(L \) = Actual Applied Load (lbs)
- \(N \) = Shaft Speed (RPM)
- \(D \) = Pitch Diameter (in) of Sheave, etc.
- \(F \) = Load Factor
- \(LF \) = Load Factor

1.0 for Chain or Gear Drive, 1.5 for Timing Belts, 2.5 for All V Belts, 3.5 for Flat Belts
2.1 for Reciprocating Compressors and other Severe Shock Drives and 1.8 for Large Inertia Type Drives (i.e. crushers, chippers, planers, etc.)

Compound Drives and Power Engaged Power Take-Off applications must have written factory review.

For nearly a century, we’ve been putting horsepower to work by designing, engineering and manufacturing rugged-duty industrial products. Our products and our reputation are bolted to the most renowned engine manufacturers and equipment OEMs in the world. Our mission is to make your machines and vehicles more productive, more durable, more operator-friendly, more cost-effective. From design and installation consultation through after-sale support, Twin Disc and its distributors are committed to your business. No one knows more about managing horsepower in more ways than Twin Disc.

TRANS MISSIONS • CLUTCHES • PTOS
PUMP DRIVES • TORQUE CONVERTERS
GEARBOXES • HYDRAULIC PTO PRODUCTS

Twin Disc, Incorporated
Racine, Wisconsin 53403 USA
Phone +1-262-638-4000
Fax +1-262-638-4482
www.twindisc.com

TD-Bulletin-IB321P
© 2007, Twin Disc, Incorporated
Printed in the USA - 04/2007